
How break RSA-1024 ?

Asprotect 1.0/1.1/1.11c

- BETA v3 : DON’T SHARE IT -

by Amenesia//TKM!

Mais le vice n’a point pour mère la science,
Et la vertu n’est pas fille de l’ignorance.

Théodore Agrippa d’Aubigné

1 Introduction

In order to learn basis i decided to study some well-known protections and
their weakness. The first is Asprotect and the weakness discovered by Recca
few years ago. We know that Recca has been able to break Asprotect reg-
istration scheme using a weakness in the random generator so let’s go...

ASProtect - the system of software protection of applications, de-
signed for quick implementation of application protection func-
tions, especially targeted for software developers. ASProtect is
designed for such specific tasks as working with registration keys
and creation of evaluation and trial application versions.

2 Asprotect 1.0/1.1 [built-in key]

When a project is created several parameters are generated and stored in a
file called project name.aspr. The more important are A, D, E and N which
are numbers in base 64 (written from right to left).

A = INDtrZliM4t...0czFJpN42UQ==
D = U2atlST1lQ...kHcbIGwJU8=
E = EQAAAAAA...AAAAAAAA=
N = X7lD2zsvq3QW...ha6mOrdvULEAM8=

Then when a registration key is computed:
1 - H1 = RipeMD-160(A)
2 - H2 = MD5(Registration Information—H1)
3 - Key = RSA(D,N, [H2—Registration Information—H1])

1

Key will look like:

PYgt/87koSvbYPluc+/crrilfWI+ssZSU7UhgCLmK3D1C+x+
EX9n7ukwM5sKmI+nsH66V7L28BFTziNz5DOPLRHAqnI11wN5
Nd/dm0Esw20mm66V7L28BFTziNz55DOP4kzt+bie/rW4grgG
+e8/hsIuotMqUXguWKBnOXsoQ89Kg92T0MkB4FCZYuZQo=

So this scheme seems secure...

2.1 How D, N and E are created ?

The routine is in a DLL called RSAVR.dll:
1- Generate two prime numbers P and Q (512-bits)
1.1- Create a random number 512-bits
1.2- Find the nearest prime number (very slow)
2- Compute N = P ∗Q
3- Compute D = E−1phi(N) (with E = 17)

So if we can find P and Q we will be able to factorize N .

2.2 How P and Q are created ?

unsigned long _rand()
{

Seed *= 214013;
Seed += 2531011;
return(((Seed >> 16) & 0x7FFF));

}

unsigned long RandInt()
{

for(i=0;i<4;i++) { rval = ((rval << 8) +_ rand()); }
return(rval);

}

Seed = (time() + ThreadId()) xor TickCount();
for(ri=0;ri<16;ri++) { BigNumber1[ri] = RandInt(); }
BigNumber1[ri] = BigNumber1[ri] xor C0000000h;
P= nextPrime(BigNumber1);

for(ri=0;ri<16;ri++) { BigNumber2[ri] = RandInt(); }
BigNumber2[ri] = BigNumber2[ri] xor C0000000h;
Q= nextPrime(BigNumber2);

2

So if we can guess time() + ThreadId()) xor TickCount() value, we will
be able to find P and Q...

2.3 Attack

I don’t know how Recca did to find the right seed but it seems that the only
way is to brute-force it (there are 232 possibilities):
1 - Choose a seed
2 - Compute BigNumber1 and BigNumber2
3 - Find P = nextPrime(BigNumber1) and Q = nextPrime(BigNumber2)
4 - If N ! = P ∗Q then try with an other seed...

But primality testing is time consuming so it’s impossible to check quickly
the 232 differents seeds.

2.3.1 Reduce space size

The first improvement is based on the fact that ThreadId and TickCount
are, the most of the time, quite smalls. So the hightest bits of the seed are
fixed by time(). Consequently, we can check only seeds whose value is near
from the releasing date of the protected software.

2.3.2 Improve the algorithme

Primality testing is a very slow step so we have to find an algorithm to
check if a seed is the right one without computing the real value of P and
Q. The trick is that nextPrime() function modify only the lowest dword of
BigNumber1 and BigNumber2.

P = BigNumber1 + ∆1 with ∆1 ≤ 264

Q = BigNumber2 + ∆2 with ∆2 ≤ 264

N = P ∗Q = (BigNumber1 + ∆1) ∗ (BigNumber2 + ∆2)
N = BigNumber1 ∗BigNumber2 + ∆3 with ∆3 ≤ 2(512+64+2)

So: Nhigh = BigNumber1high ∗BigNumber2high

Algorithm:
1- Choose a seed
2- Compute BigNumber1high and BigNumber2high

3- If Nhigh! = BigNumber1high ∗BigNumber2high then choose an other seed
4- Compute BigNumber1 and BigNumber2 (to avoid collisions)
5- Find P = NextPrime(BigNumber1)
and Q = NextPrime(BigNumber2)
6- If N ! = P ∗Q then choose an other seed

3

2.4 Example

Asprotect 1.1 is protected with Asprotect 1.1. Hard to find a nicer exemple
to check if our algorithme is efficient or not...

N and E values are stored in the protected software:

N = EB1D4EADA4815F6277519791BFFA8B4C0B872D1C436515AB
D9572B22BF6A03FECB4E5CC49AF1EE35C31344617A1210663056
90529B9CE7F13ED2D37CD7034A3EDD096853EC61243BCCAC5A58
800B0330A4DD85E9AA237F2F2AE60CA049B1D2777B2E0C5FF51E
058382A86C3EC12F7AB41642022772FF2A2D3DBA704725702199

E = 17

Asprotect was released in october 2000 so we can choose 39000000h as min-
imal seed value. We find 398BBB72h (collision) then 399BACC4h in 1
minute (1 hour to check the 232 possibilities):

D= l8F1EGKSQWCw9Et5klCpkm9/TIQFw0xOxibd+bQNndzGYoIX
4PmHXcdZtN3VWRQfuYS/cLeEf0i+kG3Cd7kaqKCkBO3xiAFgZMf
vW8D+bov+AfjDICITq5/Lhex7PykLGtUNnH8LSsmIDSWqldwX3Q
9o8U4HcJSjSJIfS4bumc=

3 Asprotect 1.11c

Quickly A.S. publish a new version of Asprotect in order to patch this little
problem. But it seems that until now nobody break it... :)

The random number generator is:

unsigned long _rand()
{

Seed = (time() + ThreadId()) xor TickCount();
Seed *= 214013;
Seed += 2531011;
return(((Seed >> 16) & 0x7FFF));

}

unsigned long RandInt()
{

for(i=0;i<4;i++)
{ rval = ((rval << 8) +_ rand()); }

4

return(rval);
}

for(ri=0;ri<16;ri++) { BigNumber1[ri] = RandInt(); }
BigNumber1[ri] = BigNumber1[ri] xor C0000000h;
P= nextPrime(BigNumber1);

for(ri=0;ri<16;ri++) { BigNumber2[ri] = RandInt(); }
BigNumber2[ri] = BigNumber2[ri] xor C0000000h;
Q= nextPrime(BigNumber2);

So a new seed is computed for each dword. Here again we need to write
a brute-forcer. But we have the same problem how find rights seeds without
performing primality test ? And how check the 4 ∗ 2512 possibilities for each
BigNumber ?

3.1 Reduce space size

GetCurrentThreadId is constant, GetTickCount and time() are based on
elapsed time... but the generation is so fast that GetTickCount and time()
are constants during the generation of a BigNumber, the same Seed is com-
puted for each dword (but the Seed is different for each BigNumber because
of primality testing step) and consequently rand() has always the same
value which is inferior to 07FFFh. So we have only 215 ∗ 215 couple of seed
instead of 4 ∗ 2512 ∗ 2512, with:

BigNumber1 = [AorC0000000h]AAAA . . . AAAA
BigNumber2 = [BorC0000000h]BBBB . . . BBBB

3.2 Improve

Each BigNumber has a known structure, we will use this information to
guess if a seed is wrong or not. Indeed if the result of the division of the
highest dwords of N by the highest dwords of BigNumber1 has a structure
which looks like (B or C0000000h)BB, we can bet that this seed permits to
generate P and so Q = N/P . Now there are only 215 to check...

P = [AorC0000000h]AAAA . . . AAAA + ∆1

Q = [BorC0000000h]BBBB . . . BBBB + ∆2

N = BigNumber1 ∗BigNumber2 + ∆3

So: Nhigh/BigNumber1high = [BorC0000000h]BBBB

5

1- Choose a seed (that is to say a rand())...
2- Compute BigNumber1high

3- If Nhigh/BigNumber1high doesn’t have the right structure try again
4- Compute BigNumber1
5- Find P = NextPrime(BigNumber1)
6 - Compute Q = N/P

3.3 Example

Asprotect 1.11c is protected with Asprotect 1.11c and:

N = C7D6E57A0D1C3A9752618FB497A6E4D1DCEC39EF22318F0C
6776E429ACBC3946F2018E643746E3817C8C389EC1D18DBC0716
E2D94C5C37F691A18D13D6E6F122D03D00090AF7AAEBC5B255CE
806D00B13B27AB93F5E25676B09D01596B57AC3C2612571EE0CD
02019B87ACE4564257C710FD02A9CBB7AD8C8672586F416D536D

Using the algo described before we found, after 1s (3s to check the 215 pos-
sibilities), that the right rand() is 5454542D. So:

P = D454542D5454542D...
Q = F0F0F088F0F0F088...

And:

D = HV/nbSNxR14Tvhm4bHRVey+U+qdbHQk8Q+BPfBrY
qZYMa14KmBhtGX4flkK+gVoGGX23485UMFwdxMMux5Aw
DtEsU+ZTzlQmvNX5zEuDRVg/1jZJGc7NIBltCVy+sOt+
iVqzBnopoHPQHrNGzDkr/615Ch40ns4iIWp3i7PbRs

4 Conclusion

Funny, isn’t it ? Ok, it is a very old software but it is a good exemple of
how a scheme can be poorly implemented.

If you want to talk about protection, or any other interesting piece of
code, feel free to contact me at ?[at]?[dot]?. See you soon for new adven-
tures...
PS: Greets to x ∈ {TKM !, FFF, CoRE,GoD,UCF,DAMN, TMG, . . .}.

6

